發表《Data Science And Engineering》雜志多久能被SCI數據庫收錄?
來源:優發表網整理 2024-09-18 11:14:29 136人看過
通常情況下,《Data Science And Engineering》雜志發表的文章被SCIE數據庫收錄的時間沒有固定標準,若想了解詳細、準確的具體情況,建議直接與雜志社取得聯系或者向在線客服進行咨詢。
多久能被SCI數據庫一般可以歸納出以下情況:
論文發表后到在線時間:SCI論文發表后,一般需要大約3個月的時間才能在期刊官網上線,這是論文初次對外公開的時間點。
在線后到數據庫檢索時間:論文在線后,通常還需要1-3個月的時間才能在Web of Science(WOS)數據庫中檢索到,這個過程被稱為論文的索引或收錄。
整體時間周期:從投稿到論文被SCI數據庫收錄,整個周期大概需要一年左右的時間。具體來說,投稿后可能需要5-6個月收到接收通知,然后經過2-3個月論文會在官網上線,再之后2-3個月論文會被WOS數據庫收錄。
然而,這個時間周期并不是絕對的,它受到多種因素的影響,如:期刊類型、論文質量、數據庫更新等。
《Data Science And Engineering》雜志已被SCIE國際知名數據庫收錄,在JCR分區中位于COMPUTER SCIENCE, INFORMATION SYSTEMS學科Q1區COMPUTER SCIENCE, THEORY & METHODS學科Q1區,在CiteScore評價中位于Computer Science學科的Q1區Computer Science學科的Q1區Computer Science學科的Q1區Computer Science學科的Q1區具有較高的學術影響力,在該領域受到廣泛認可。
WOS分區(數據版本:2023-2024年最新版)
按JIF指標學科分區 | 收錄子集 | 分區 | 排名 | 百分位 |
學科:COMPUTER SCIENCE, INFORMATION SYSTEMS | ESCI | Q1 | 43 / 249 |
82.9% |
學科:COMPUTER SCIENCE, THEORY & METHODS | ESCI | Q1 | 19 / 143 |
87.1% |
按JCI指標學科分區 | 收錄子集 | 分區 | 排名 | 百分位 |
學科:COMPUTER SCIENCE, INFORMATION SYSTEMS | ESCI | Q2 | 72 / 251 |
71.51% |
學科:COMPUTER SCIENCE, THEORY & METHODS | ESCI | Q1 | 24 / 143 |
83.57% |
名詞解釋:
WOS即Web of Science,是全球獲取學術信息的重要數據庫,Web of Science包括自然科學、社會科學、藝術與人文領域的信息,來自全世界近9,000種最負盛名的高影響力研究期刊及12,000多種學術會議多學科內容。給期刊分區時會按照某一個學科領域劃分,根據這一學科所有按照影響因子數值降序排名,然后平均分成4等份,期刊影響因子值高的就會在高分區中,最后的劃分結果分別是Q1,Q2,Q3,Q4,Q1代表質量最高。
CiteScore分區(數據版本:2024年最新版)
CiteScore | SJR | SNIP | CiteScore排名 | ||||||||||||||||||||
10.4 | 1.836 | 3.246 |
|
名詞解釋:
CiteScore:衡量期刊所發表文獻的平均受引用次數。
SJR:SCImago 期刊等級衡量經過加權后的期刊受引用次數。引用次數的加權值由施引期刊的學科領域和聲望 (SJR) 決定。
SNIP:每篇文章中來源出版物的標準化影響將實際受引用情況對照期刊所屬學科領域中預期的受引用情況進行衡量。
作為一本專注于Engineering - Computational Mechanics領域的學術期刊,它致力于發表高質量的研究論文和為相關領域的研究人員提供重要的學術資源。
該雜志出版周期是4 issues per year,平均審稿速度預計為: 12 Weeks 。
《數據科學與工程》(DSE)雜志響應了信息技術發展重點從 CPU 密集型計算到數據密集型計算的顯著變化,其中數據(尤其是大數據)的有效應用變得至關重要。新興學科數據科學與工程是一門跨學科領域,整合了計算機科學、統計學、信息科學和其他領域的理論和方法,專注于數據收集和管理、數據集成和關聯、從海量數據集中提取信息和知識以及在不同應用領域使用數據的高效技術和系統的基礎和工程。DSE 專注于理論背景和先進的工程方法,旨在為研究人員、專業人士和行業從業者提供一個主要論壇,分享他們在這個快速增長領域的知識。
它深入報道了數據科學和數據工程密切相關領域的最新進展。更具體地說,DSE 涵蓋四個領域:(i)數據本身,即數據(尤其是大數據)的性質和質量;(ii)從數據(尤其是大數據)中提取信息的原理; (iii) 數據密集型計算背后的理論;(iv) 用于分析和管理大數據的技術和系統。DSE 歡迎探討上述主題的論文。具體主題包括但不限于:(a) 數據的性質和質量;(b) 數據密集型計算的計算復雜性;(c) 用于解決大數據輸入問題的算法的設計和分析的新方法;(d) 從互聯網和傳感設備或傳感器網絡收集的數據的收集和集成;(e) 大數據的表示、建模和可視化;(f) 大數據的存儲、傳輸和管理;(g) 數據密集型計算的方法和算法,如大數據挖掘、大數據在線分析處理、基于大數據的機器學習、基于大數據的決策、大數據統計計算、大數據圖論計算、大數據線性代數計算以及基于大數據的優化。 (h) 數據密集型計算的硬件系統和軟件系統,(i) 數據安全、隱私和信任,以及(j) 大數據的新應用。
聲明:以上內容來源于互聯網公開資料,如有不準確之處,請聯系我們進行修改。