Journal Title:Data Science And Engineering
The journal of Data Science and Engineering (DSE) responds to the remarkable change in the focus of information technology development from CPU-intensive computation to data-intensive computation, where the effective application of data, especially big data, becomes vital. The emerging discipline data science and engineering, an interdisciplinary field integrating theories and methods from computer science, statistics, information science, and other fields, focuses on the foundations and engineering of efficient and effective techniques and systems for data collection and management, for data integration and correlation, for information and knowledge extraction from massive data sets, and for data use in different application domains. Focusing on the theoretical background and advanced engineering approaches, DSE aims to offer a prime forum for researchers, professionals, and industrial practitioners to share their knowledge in this rapidly growing area.
It provides in-depth coverage of the latest advances in the closely related fields of data science and data engineering. More specifically, DSE covers four areas: (i) the data itself, i.e., the nature and quality of the data, especially big data; (ii) the principles of information extraction from data, especially big data; (iii) the theory behind data-intensive computing; and (iv) the techniques and systems used to analyze and manage big data. DSE welcomes papers that explore the above subjects. Specific topics include, but are not limited to: (a) the nature and quality of data, (b) the computational complexity of data-intensive computing,(c) new methods for the design and analysis of the algorithms for solving problems with big data input,(d) collection and integration of data collected from internet and sensing devises or sensor networks, (e) representation, modeling, and visualization of big data,(f) storage, transmission, and management of big data,(g) methods and algorithms of data intensive computing, such asmining big data,online analysis processing of big data,big data-based machine learning, big data based decision-making, statistical computation of big data, graph-theoretic computation of big data, linear algebraic computation of big data, and big data-based optimization. (h) hardware systems and software systems for data-intensive computing, (i) data security, privacy, and trust, and(j) novel applications of big data.
《數(shù)據(jù)科學與工程》(DSE)雜志響應了信息技術發(fā)展重點從 CPU 密集型計算到數(shù)據(jù)密集型計算的顯著變化,其中數(shù)據(jù)(尤其是大數(shù)據(jù))的有效應用變得至關重要。新興學科數(shù)據(jù)科學與工程是一門跨學科領域,整合了計算機科學、統(tǒng)計學、信息科學和其他領域的理論和方法,專注于數(shù)據(jù)收集和管理、數(shù)據(jù)集成和關聯(lián)、從海量數(shù)據(jù)集中提取信息和知識以及在不同應用領域使用數(shù)據(jù)的高效技術和系統(tǒng)的基礎和工程。DSE 專注于理論背景和先進的工程方法,旨在為研究人員、專業(yè)人士和行業(yè)從業(yè)者提供一個主要論壇,分享他們在這個快速增長領域的知識。
它深入報道了數(shù)據(jù)科學和數(shù)據(jù)工程密切相關領域的最新進展。更具體地說,DSE 涵蓋四個領域:(i)數(shù)據(jù)本身,即數(shù)據(jù)(尤其是大數(shù)據(jù))的性質(zhì)和質(zhì)量;(ii)從數(shù)據(jù)(尤其是大數(shù)據(jù))中提取信息的原理; (iii) 數(shù)據(jù)密集型計算背后的理論;(iv) 用于分析和管理大數(shù)據(jù)的技術和系統(tǒng)。DSE 歡迎探討上述主題的論文。具體主題包括但不限于:(a) 數(shù)據(jù)的性質(zhì)和質(zhì)量;(b) 數(shù)據(jù)密集型計算的計算復雜性;(c) 用于解決大數(shù)據(jù)輸入問題的算法的設計和分析的新方法;(d) 從互聯(lián)網(wǎng)和傳感設備或傳感器網(wǎng)絡收集的數(shù)據(jù)的收集和集成;(e) 大數(shù)據(jù)的表示、建模和可視化;(f) 大數(shù)據(jù)的存儲、傳輸和管理;(g) 數(shù)據(jù)密集型計算的方法和算法,如大數(shù)據(jù)挖掘、大數(shù)據(jù)在線分析處理、基于大數(shù)據(jù)的機器學習、基于大數(shù)據(jù)的決策、大數(shù)據(jù)統(tǒng)計計算、大數(shù)據(jù)圖論計算、大數(shù)據(jù)線性代數(shù)計算以及基于大數(shù)據(jù)的優(yōu)化。 (h) 數(shù)據(jù)密集型計算的硬件系統(tǒng)和軟件系統(tǒng),(i) 數(shù)據(jù)安全、隱私和信任,以及(j) 大數(shù)據(jù)的新應用。
Data Science And Engineering由Springer Nature出版商出版,收稿方向涵蓋Engineering - Computational Mechanics全領域,此刊是該細分領域中屬于非常不錯的SCI期刊,在行業(yè)細分領域中學術影響力較大,專業(yè)度認可很高,所以對原創(chuàng)文章要求創(chuàng)新性較高,如果您的文章質(zhì)量很高,可以嘗試。平均審稿速度 12 Weeks ,影響因子指數(shù)5.1,該期刊近期沒有被列入國際期刊預警名單,廣大學者值得一試。
大類學科 | 分區(qū) | 小類學科 | 分區(qū) | Top期刊 | 綜述期刊 |
計算機科學 | 2區(qū) | COMPUTER SCIENCE, INFORMATION SYSTEMS 計算機:信息系統(tǒng) COMPUTER SCIENCE, THEORY & METHODS 計算機:理論方法 | 2區(qū) 2區(qū) | 否 | 否 |
名詞解釋:
中科院分區(qū)也叫中科院JCR分區(qū),基礎版分為13個大類學科,然后按照各類期刊影響因子分別將每個類別分為四個區(qū),影響因子5%為1區(qū),6%-20%為2區(qū),21%-50%為3區(qū),其余為4區(qū)。
按JIF指標學科分區(qū) | 收錄子集 | 分區(qū) | 排名 | 百分位 |
學科:COMPUTER SCIENCE, INFORMATION SYSTEMS | ESCI | Q1 | 43 / 249 |
82.9% |
學科:COMPUTER SCIENCE, THEORY & METHODS | ESCI | Q1 | 19 / 143 |
87.1% |
按JCI指標學科分區(qū) | 收錄子集 | 分區(qū) | 排名 | 百分位 |
學科:COMPUTER SCIENCE, INFORMATION SYSTEMS | ESCI | Q2 | 72 / 251 |
71.51% |
學科:COMPUTER SCIENCE, THEORY & METHODS | ESCI | Q1 | 24 / 143 |
83.57% |
名詞解釋:
WOS即Web of Science,是全球獲取學術信息的重要數(shù)據(jù)庫,Web of Science包括自然科學、社會科學、藝術與人文領域的信息,來自全世界近9,000種最負盛名的高影響力研究期刊及12,000多種學術會議多學科內(nèi)容。給期刊分區(qū)時會按照某一個學科領域劃分,根據(jù)這一學科所有按照影響因子數(shù)值降序排名,然后平均分成4等份,期刊影響因子值高的就會在高分區(qū)中,最后的劃分結(jié)果分別是Q1,Q2,Q3,Q4,Q1代表質(zhì)量最高。
CiteScore | SJR | SNIP | CiteScore排名 | ||||||||||||||||||||
10.4 | 1.836 | 3.246 |
|
名詞解釋:
CiteScore:衡量期刊所發(fā)表文獻的平均受引用次數(shù)。
SJR:SCImago 期刊等級衡量經(jīng)過加權(quán)后的期刊受引用次數(shù)。引用次數(shù)的加權(quán)值由施引期刊的學科領域和聲望 (SJR) 決定。
SNIP:每篇文章中來源出版物的標準化影響將實際受引用情況對照期刊所屬學科領域中預期的受引用情況進行衡量。
是否OA開放訪問: | h-index: | 年文章數(shù): |
開放 | -- | 33 |
Gold OA文章占比: | 2021-2022最新影響因子(數(shù)據(jù)來源于搜索引擎): | 開源占比(OA被引用占比): |
100.00% | 5.1 | 0.98... |
研究類文章占比:文章 ÷(文章 + 綜述) | 期刊收錄: | 中科院《國際期刊預警名單(試行)》名單: |
90.91% | SCIE | 否 |
歷年IF值(影響因子):
歷年引文指標和發(fā)文量:
歷年中科院JCR大類分區(qū)數(shù)據(jù):
歷年自引數(shù)據(jù):
同小類學科的其他優(yōu)質(zhì)期刊 | 影響因子 | 中科院分區(qū) |
Journal Of Field Robotics | 4.2 | 2區(qū) |
Computer Networks | 4.4 | 2區(qū) |
Computer Science Review | 13.3 | 1區(qū) |
Journal Of Computational Science | 3.1 | 3區(qū) |
Neurocomputing | 5.5 | 2區(qū) |
Ict Express | 4.1 | 3區(qū) |
Computer Speech And Language | 3.1 | 3區(qū) |
Applied Artificial Intelligence | 2.9 | 4區(qū) |
International Journal Of Approximate Reasoning | 3.2 | 3區(qū) |
Digital Communications And Networks | 7.5 | 2區(qū) |
若用戶需要出版服務,請聯(lián)系出版商。